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ANODE-SHAPE DETERMINATION WITH ALLOWANCE

FOR ELECTROLYTE PROPERTIES IN PROBLEMS

OF DIMENSIONAL ELECTROCHEMICAL MACHINING OF METALS

UDC 621.9.047L. M. Kotlyar and N. M. Minazetdinov

Based on the boundary-element technique, a method for determining the contour of an anode-workpiece
with a prescribed shape of a cathode-tool is suggested for plane problems of dimensional electrochem-
ical machining of metals. Within the scope of the assumptions made, the original problem is reduced
to the problem of a fictitious flow of an ideal fluid with free surfaces. The allowance for the machining
mode and electrolyte properties yields a nonlinear condition at the free surface.

Key words: electrochemical machining of metals, shape of the anode boundary, boundary-element
method.

Introduction. Dimensional electrochemical machining (DECM) of metals is an advanced method for the
production of workpieces from metals and alloys with a specified shape, size, and surface quality [1]. The method
is based on the principle of the local dissolution of the anode — workpiece in the electrolyte flow. The cathode —
machining tool — is represented by an electrode with a specified surface shape. The electrochemical dissolution
rate V of the metal, according to Faraday’s law, is given by the expression V = ηεi, where η is the current
effervescive for the reaction of anode dissolution of the metal, i is the current density, and ε is the electrochemical
equivalent of the metal. The current effervescive η allows for the processes that occur at the anode surface,
which accompany metal dissolution, and is equal to the proportion of the charge spent on anode dissolution of
the metal only. Electrochemical processes are caused by electrolyte-solution pumping through the interelectrode
gap to remove reaction products (gas and sludge) as well as released heat from the machining area. To improve
machining precision, the gap between the electrodes for DECM is made small (about 0.1 mm) by providing a
specified cathode-feed velocity towards dissolution.

Two stages of machining could be distinguished: 1) workpiece machining in an unsteady regime (here,
the law of the dissolution-rate distribution over the workpiece surface and local interelectrode gaps vary in time);
2) steady regime of machining where metal dissolution at all points of the workpiece surface occurs with a velocity
distribution that ensures parallel motion of anode points with a velocity equal to the cathode-feed velocity.

Model of the Process. Electrochemical machining is a complicated process, which is described, in the
general case, by a system of equations of a viscous multiphase electricity-conducting fluid, Maxwell equations,
equations of energy, convection diffusion, gas state, and dependences of thermophysical parameters on temperature,
pressure, and medium composition. The mathematical model of DECM reduces to determining the shape of one
electrode with a given shape of the other. When both cathode shape and machining condition are specified, the
problem is called direct. The inverse problem determines the shape of the cathode-tool that, under certain machining
conditions, provides a workpiece of a required configuration [1].

Solving this problem is hindered by the fact that the workpiece boundary is unknown. Therefore, the ideal
process model is used as the first approximation in the theoretical analysis of the DECM process. The main
assumptions of the model and their detailed justification can be found in [1]. According to this model, in the
case of a constant-current DECM, the electric field in the interelectrode gap can be considered as potential, i.e.,

Kama State Polytechnical Institute, Naberezhnye Chelny 423810. Translated from Prikladnaya Mekhanika
i Tekhnicheskaya Fizika, Vol. 44, No. 3, pp. 179–184, May–June, 2003. Original article submitted June 7, 2002;
revision submitted October 15, 2002.

450 0021-8944/03/4403-0450 $25.00 c© 2003 Plenum Publishing Corporation



0.5

0 50 100 150

1.0

ia, À/cm2

n à

0.5

0 50 100 150

1.0

ia, À/cm2

n b

3
2
1

3

2

1

Fig. 1. Current effervescive versus the anode current density for machining 5KhNM steel in NaCl
and NaNO3 solutions with various concentrations: (a) NaCl with C = 5 (1), 10 (2), and 15% (3);
(b) NaNO3 with C = 10 (1), 15 (2), and 20% (3).

TABLE 1

NaCl NaNO3

C, % k C, % k

5 0.989 10 −1
10 0.972 15 −0.985
15 0.951 25 −0.983

E = − gradu (E is the vector of electric-field strength and u is the electric-field potential). In an ideal DECM
process, the electric field can be described by the Laplace equation ∇2u = 0. The values of the potential ua and uc

at the anode and cathode surfaces are constant [1].
Provided the necessary conditions are fulfilled, long-time machining causes a definite and time-constant

change in the workpiece shape, which is called steady or stationary. In the steady mode, the workpiece-surface
shape in the moving coordinate system attached to the cathode remains unchanged. This implies that the anode
surface moves together with the cathode at a constant velocity Vc. In this case, the linear velocity of anode
dissolution Va = ηεi/ρ in the direction normal to the anode surface at every point of the anode equals

Va = Vc cos θ = (Vc,na). (1)

Here θ is the angle between the vector of the cathode-feed velocity Vc and the unit vector of the outward normal to
the anode na. From condition (1) the steady distribution of the current density i at the stationary anode boundary
can be determined by the equality

η(ia)ia = (ρVc/ε) cos θ, (2)

where ia is the anode current density and ρ is the density of the anode material. The current effervescive η depends
on various parameters of the process, mainly, on the anionic composition and concentration of the electrolyte,
chemical composition and density of the metal, and current density. Condition (2) allows for the fact that η is a
function of i.

Figure 1 shows the current effervescive versus the anode current density for machining 5KhNM steel in NaCl
and NaNO3 solutions with various concentrations C, which were experimentally obtained in [2]. It follows from
Fig. 1 that the dependence η(ia) for the above-mentioned electrolytes is described by the hyperbolic equation

η = a0 + a1/ia. (3)

Here, a0 and a1 are constant coefficients. For the experimental data in Fig. 1, the values of Pearson’s correlation
coefficient k are obtained (Table 1).

Substituting (3) into (2), we obtain

ia = −a1/a0 + (ρVc/(a0ε)) cos θ. (4)

In the model of the ideal process, the current density is determined by Ohm’s law i = æE = −æ gradu,
where æ is the specific electrical conductivity of the medium. Then, the equality ia = −æ ∂u/∂na holds at the
anode surface.
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TABLE 2

NaCl NaNO3

C, % a b C, % a b

5 −0.301 2.401 10 0.210 1.280
10 −0.205 1.865 15 0.141 1.104
15 −0.127 1.467 25 0.077 0.931

Let us pass to the dimensionless variables ψ = (u − uc)/(ua − uc) and n = na/H (H is the characteristic
size). Then, condition (4) takes the form

−æ
ua − uc

H

∂ψ

∂n
= −a1

a0
+
ρVc

a0ε
cos θ. (5)

Let us introduce the characteristic current density i0 = ρVc/ε into our consideration. According to (2), it corresponds
to the anode current density for the case of parallel electrode boundaries in the stationary DECM mode with
the current effervescive equal to unity and the cathode-feed direction perpendicular to these boundaries. The
characteristic length is determined by the expression

H = æ(ua − uc)/i0. (6)

The distance H determines the interelectrode-gap width if the above-given conditions for the characteristic current
density are satisfied. With allowance for (6), the steady condition (5) takes the form

∂ψ

∂n
=

a1

a0i0
− 1
a0

cos θ. (7)

With allowance for condition (7) in the model of the ideal process, the DECM problem in a dimensionless
form reduces to obtaining one of the unknown boundaries in the following problem. The function ψ corresponding
to the electric-field potential satisfies the Laplace equation in the interelectrode gap

∇2ψ = 0.

The following conditions are satisfied at the boundaries of the electrodes:

ψa = 1, ψc = 0.

The steady condition is fulfilled at the anode boundary:

∂ψ

∂n
= −(a+ b cos θ), a = − a1

a0i0
, b =

1
a0
.

The coefficients a and b are found from the experimental data presented in Fig. 1. The calculation results for
i0 = 100 A/cm2 are listed in Table 2. In electrically insulated sectors, the condition of current impermeability is
satisfied:

∂ψ

∂n
= 0. (8)

In formulating and solving DECM problems, the hydrodynamic analogy [3] of the electric field is employed, according
to which the plane potential electric field is replaced by a fictitious flow of an ideal incompressible fluid. If we
introduce the complex potential of the electrostatic field W = ϕ+ iψ, where ψ is the dimensionless potential of the
electric field, we obtain ∂ψ/∂n = V along the line ψ = const (in the case of the hydrodynamic interpretation of
the DECM problems, V is the velocity vector of the fictitious flow of an ideal incompressible fluid). In standard
hydrodynamic terminology, the problem of anode-shape determination is called a free-boundary problem.

Formulation of the Problem. We consider a plane problem of steady electrochemical machining by
a cathode-tool consisting of rectangular segments and a semicircular cylindrical step of radius R (Fig. 2). The
cathode moves in the negative y direction along the ordinate axis. The interelectrode gap is bounded by the anode
boundary Γ1 and cathode boundary Γ3. In numerical calculations, the incoming and outgoing fictitious flows are
cut at the right angle to the original direction of velocity at certain finite distances from the step. The cutting lines
correspond to the segments of inflow Γ4 and outflow Γ2. The anode boundary Γ1 is unknown, and its position is to
be obtained in the course of solving the problem.
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Fig. 2. Cathode-tool geometry.
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Fig. 3. Calculation results for anode boundaries: NaCl with C = 10 (1) and
15% (3); NaNO3 with C = 10 (2), 15 (4), and 25% (5).

The problem reduces to solving the Laplace equation for the dimensionless potential ψ of the electrostatic
field. At the domain boundaries, the function ψ satisfies the following conditions: ∂ψ/∂n = −(a + b cos θ) at the
boundary Γ1 (θ is the angle between the velocity vector of the fictitious flow and the abscissa axis), ψ = 0 at the
boundary Γ3, ∂ψ/∂n = 0 on the cutting lines Γ4 and Γ2. The latter condition implies the absence of the velocity
component normal to the main stream.

The problem is solved by the boundary-element method [4]. The anode boundary is found in accordance with
iterative algorithms of free-surface construction considered in [5]. The method is based on the condition stipulating
that the anode boundary is a streamline of the fictitious flow of an ideal fluid. In numerical calculations, the
original position of the anode boundary is set arbitrarily. At all nodal points of the anode, we adopt the condition
∂ψ/∂n = −(a + b cos θ). The value of the potential found for each nodal point of the anode is compared with the
value ψa = 1. The problem is considered to be solved if the difference between these two values is smaller than a
specified error. Otherwise, the anode-boundary position securing the desired accuracy is iteratively selected.

Calculation Results. The problem is solved in dimensionless variables. The varied parameters of the
problem are the step radius R and the parameters a and b. The interelectrode gap in the cross sections Γ2 and Γ4

is found by the formula

h = 1/(a+ b). (9)

Figure 3 shows the calculation results at R = 1 for 5KhNM steel in NaCl and NaNO3 solutions of various
concentrations (see Table 2).

Electrochemical Shaping by a Sectional Cathode. The use of sectional cathodes makes it possible
to machine workpieces with large surfaces, such as, for instance, forging dies. We consider a plane problem of
steady electrochemical machining by a two-section cathode-tool (Fig. 4). The cathode boundary consists of the
rectangular sectors Γ3 and Γ5, which are boundaries of the sections, and the sector Γ4 corresponds to the insulation
boundary between the sections. The interelectrode gap is bounded by the anode boundary Γ1, cathode boundary,
and the inflow Γ6 and outflow Γ2 regions of the fictitious flow. The vector Vc shows the cathode-feed direction. The
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Fig. 4. Geometry of a two-section cathode-tool.
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Fig. 5. Calculation results of anode boundaries for a two-section
cathode-tool (notation the same as in Fig. 3).

function ψ satisfies the following conditions at the domain boundaries: ∂ψ/∂n = −(a+ b cos θ) at the boundary Γ1,
ψ = 0 at the boundaries Γ3 and Γ5, and ∂ψ/∂n = 0 on the cutting lines Γ2 and Γ6. In the sector Γ4, condition (8)
is satisfied.

The varied parameters of the problem are the dimensionless length L of the sector Γ4 and the parameters a
and b. The end-face gap in the cross sections Γ6 and Γ2 is calculated by formula (9). Figure 5 shows the calculation
results at L = 1 for the solutions of NaCl and NaNO3 with different concentrations (see Table 2).

Conclusions. The study implements a two-dimensional mathematical model of the ideal DECM process
suggested in [1] with allowance for a particular dependence of the current effervescive on the anode current density.
Steady-state shapes of the anode have been obtained for two configurations of the cathode-tool. The calculation
results show that an increase in the electrolyte concentration (all other factors being equal) accelerates anode
dissolution of the metal.
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